Навигационные приборы и инструменты. Навигация - определение местоположения судна Современные навигационные приборы

Определение местоположения судна

Поговорим о нескольких простейших, но очень нужных, способах определения местоположения яхты в море. Задача простая, но крайне важная для вашей безопасности. Ее можно условно разделить на два случая:

1. Вы ведете яхту в видимости берегов и навигационных знаков, которые обозначены на вашей карте.
2. Вы ведете яхту в открытом море в отсутствии всяких ориентиров.

К слову, если курс проходит вблизи берега, но в условиях ограниченной видимости (например, ночью или в плотном тумане), то способ определения местоположения будет относиться скорее ко второму случаю.

Итак, мы совершаем прибрежное плавание и яхта не теряет из виду сушу (или знаки навигационной обстановки). Для нас важно, что в момент определения нашего местоположения мы видим необходимое количество ориентиров, которые можем идентифицировать на карте.

И еще вопрос, который необходимо обсудить. Мы живем в XXI в., и развитие электронных средств навигации достигло фантастических высот. И если полагаться только на электронику, то судовождение оказывается не сложнее компьютерной игры – требуется лишь изучение прилагаемой к прибору инструкции.

Но обратите внимание на одно обстоятельство: по законам любой страны все суда, выходящие в море, – торговые, военные и спортивные, парусные и моторные – обязаны иметь на борту полный комплект традиционных средств навигации: комплект бумажных карт, прокладочный инструмент, секстан, лоции и т.д. Штурманы, шкиперы и капитаны обязаны вести прокладку на традиционных картах во время любого морского перехода. Должен сказать, что я полностью согласен с этим порядком. Необходимо понимать, что море – это враждебная человеку стихия, и он находится с ней один на один.

Неужели можно безоговорочно доверить жизнь людей на борту, жизнь и судьбу яхты небольшой пластиковой коробочке с электронной начинкой?! Морской воздух – это очень агрессивная среда, которая рано или поздно выведет из строя тонкую микроэлектронику; рано или поздно вы забудете взять на борт запасной комплект батарей для нее; на GPS могут попасть морские брызги, дождь; в мачту может ударить молния и вывести из строя всю электронику, – в конце концов, по теории надежности любой прибор может выйти из строя сам по себе – и что делать?

Жизнь показала, что знание навигации и устойчивые навыки в кораблевождении традиционными методами просто необходимы любому человеку, который выходит в море как штурман, шкипер или капитан.

Поэтому перейдем, собственно, к способам определения местоположения судна традиционными методами.

1. Счисление, или Dead Reconing

Представьте себе, что яхта идет в открытом море и нет никаких видимых ориентиров. Чтобы понять принцип метода, предположим, что в 10.00 наша яхта находилась в точке А, которую мы нанесли на карту. Скорость яхты 7 узлов (мы ее прочитали с судового лага), истинный курс 045ºТ (считали с путевого компаса и учли магнитное склонение). Мы хотим определить, где будет находиться яхта в 11.30. Естественно, по условиям нашей задачи с 10.00 до 11.30 яхта идет, не меняя курса (045ºТ) (см. рис. 1 ), с постоянной скоростью (7knt ). Пройденный путь вычисляем по элементарной формуле:
D = S х t , где
D – путь, пройденный в милях;
S – скорость лодки в узлах;
t – время в часах.
D = 7knt х 1,5 = 10,5 n.m.

Рис. 2

Это и есть в простейшем случае счисленное местоположение нашей яхты (обозначается знаком + и буквами DR с указанием времени).

Рис. 3

Но этот способ можно применять в том случае, когда точно известны предыдущие координаты яхты (fix ), ее скорость и курс, а также отсутствует дрейф, связанный с ветром и течениями.

2. Estimate Position (EP)

В случае если известны направление и скорость течения, мы можем простым графическим методом нанести точку местоположения яхты на карту. Допустим, при вычислении DR в п.1 (см. рис. 4 ) мы узнали из атласа приливных течений, что с 10.00 до 11.30 в районе плавания существовало течение скоростью 3 узла и направлением 110ºТ. Пожалуйста, запомните, что течение всегда течет «в» указанном направлении, в отличие от ветра, который всегда дует «из» указанного направления.

Рис. 4

Итак, используя принцип независимости движений, известный из школьного курса физики (он говорит о том, что любое движение тела можно представить как векторную сумму простых прямолинейных перемещений), из точки DR 11.30 отложим с помощью прокладчика направление 110ºТ (см. рис. 5 ). Обратите внимание, что вектор течения обозначается именно так, как на рисунке.

Рис. 5

Затем вычислим длину вектора, время движения яхты: 1,5 часа = 90 min, скорость течения – 3 узла (knts ). Значит, за время движения с 10.00 до 11.30 яхта сместилась в направлении 110ºТ под влиянием течения на: 3 узла х 1,5 часа = 4,5 морских мили. Откладываем на отрезке измерителем 4,5 n.m. и получим точку EP 11.30 (стандартный символ) (см. рис. 6 ). Это и есть вычисленное положение нашей яхты в 11.30, которая с 10.00 из точки А двигалась курсом 045ºТ со скоростью 7 knt под влиянием течения направлением 110ºТ и скоростью 3 knt . Дальнейшую прокладку курса мы должны делать уже из точки EP 11.30. Также мы выполнили задачу – мы знаем, где находится яхта.

Рис. 6

3. FIX

Определенное местоположение судна в данный момент времени обозначается английским термином FIX . Существует много способов его определения. Мы рассмотрим наиболее широко применяемый и общий способ: нахождение FIX – A по двум и более компасным пеленгам (лучше трем).

Допустим, наша яхта идет курсом 0ºЕ (360º) со скоростью 7 knots . Вы проходите участок берега, где ясно и отчетливо видите маяк А , маяк В и небольшой остров С . Время 10.15, а последняя EP была определена в 9.30 (см. рис. 7 ).

Рис. 7

Обратившись к карте района, вы должны абсолютно безошибочно идентифицировать выбранные ориентиры А, В и С с их изображением на карте. (Все наземные объекты, изображенные на навигационной карте, ясно видны с моря (днем и ночью) и могут использоваться для навигации.) На картах всегда изображаются видимые с моря маяки, водонапорные башни, высокие, отдельно стоящие здания, радиомачты и т.д.

С помощью ручного компаса-пеленгатора возьмем магнитные пеленги на выбранные ориентиры А, В и С (см. рис. 8 ). Мы понимаем, что, для того, чтобы нанести на карту магнитный пеленг, мы должны преобразовать его в истинный, используя поправку на магнитное склонение.

Рис. 8

Напомним правило: при переходе от магнитного пеленга к истинному западное склонение вычитается, а восточное прибавляется.

Давайте положим, что после того, как мы взяли пеленги поочередно на маяк А , маяк В и остров и пересчитали их в истинные пеленги, мы получили следующие значения:

Истинный пеленг на маяк А – 045ºТ
Истинный пеленг на маяк В – 90ºТ
Истинный пеленг на остров С – 135ºТ

С помощью прокладчика отложим эти истинные пеленги от наших объектов А, В, С, как показано на рис. 9 .

Рис. 9

Как мы видим, пеленги пересеклись не в одной точке, а образовали некий треугольник (hat ). Это произошло из-за небольших ошибок во взятии пеленгов. Зато можно сказать, что яхта находится в 10.15 где-то внутри этого треугольника. Для наших целей такой точности вполне достаточно – мы нашли FIX . Запомните, пожалуйста, несколько правил, которые необходимо соблюдать для того, чтобы FIX вашей яхты было как можно точнее:
1. выбирайте для взятия пеленгов ближайшие, более отчетливо видимые объекты;
2. старайтесь, чтобы углы между объектами были не слишком острыми или слишком тупыми (оптимальные углы лежат в диапазоне 30–110º);
3. берите пеленги как можно точнее;
4. если скорость яхты большая (например, моторная яхта), то старайтесь взять пеленги за как можно меньший промежуток времени, чтобы уменьшить ошибку, вызванную перемещением яхты за это время.

Конечно, существуют еще много способов определения FIX , например, с помощью радара, с использованием створных объектов, измеренной секстаном высоты объектов, астрономические методы и т.д. Эти способы выходят за рамки нашего курса для «чайников».

Пожалуй, необходимо упомянуть о наиболее простом способе взятия FIX с помощью GPS – ваш GPS просто покажет вам координаты судна – нанесите их правильно на карту и поставьте время.

Навигация для "чайников". (Урок 4)

Спасительный крюйс-пеленг

Один очень опытный яхтсмен как-то рассказывал мне, что много лет назад на небольшой яхте он попал в пятидневный шторм в Средиземном море. Электрооборудование яхты вышло из строя на второй день шторма из-за удара молнии, батареи карманногоGPS исчерпали свой ресурс чуть позже, небо было затянуто тучами, так что возможности получить фикс, используя астронавигацию, не предоставлялось, да и как использовать секстан на маленькой яхте (32 фута) при высоте волны 5-6 метров?! Пять дней и ночей ветер силой 8-9 баллов свирепствовал и несколько раз менял свое направление, и о местоположении яхты можно было с уверенностью сказать только то, что она где-то в Средиземном море.

И вот на пятый вечер сквозь дождь и брызги волн шкипер заметил поблескивающий красный огонь. Заметив период огня, по справочнику огней шкипер определил маяк, а затем, несмотря на сильное волнение, используя метод крюйс-пеленга, определил свое местоположение с точностью до одной морской мили!

Итак, мы имеем только один видимый объект, который можем надежно идентифицировать на карте. В пределах нашей видимости, например, один маяк или знак навигационной обстановки, или маленький остров, мыс, скала, радиомачта.

В этом случае для определения местоположения яхты мы можем использовать метод, который называется running fix, или крюйс-пеленг. Метод основан на том, что мы берем два пеленга на один объект в разные моменты времени. Необходимым условием применения этого метода является сохранение скорости и курса яхты по крайней мере в течение промежутка времени между взятием первого и второго пеленга на этот объект.

Давайте посмотрим, как это выглядит на практике. Предположим, наша яхта идет истинным курсом 080°Т со скоростью 8 узлов. Мы ясно и четко видим скалу (rock ), обозначенную на нашей карте. С помощью компаса пеленгатора (hand bearing compass ) в 0900 берем пеленг на эту скалу и, учитывая магнитное склонение, пересчитываем его в истинный и наносим на карту. Обратите внимание, что курс (080°Т) мы прокладываем на карте в произвольном месте, так как мы пока не знаем, где находится яхта.

Допустим, первый пеленг, взятый нами в 0900 равен 45°М. Магнитное склонение положим равным 07°30"W . Пересчитываем магнитный пеленг в истинный: 045°М - 07°30"W = 37°30"T. Наносим его на карту. Продолжаем идти, скажем, 30 минут, стараясь как можно точнее держать курс 080°Т и сохраняя скорость 8 узлов. В 0930 берем второй пеленг на эту скалу. Положим, он равен 015°М. Пересчитываем его в истинный: 015° - 07°30"= 07°30"Т и наносим на карту –см. рис 1 .

Рис. 1

За 30 минут (время между взятием первого и второго пеленга) наша яхта прошла 4 морские мили курсом 80°Т. На линии курса от точки ее пересечения с первым пеленгом откладываем пройденное расстояние (4 морские мили). Переносим первый пеленг параллельно самому себе в эту точку. Точка пересечения пеленга, взятого в 0930, и перенесенного пеленга и есть местоположение нашей яхты в 0930, или RF 0930 (running fix ), --см. рис. 2 ирис. 3 .

Рис. 2

Рис. 3

Точность этого метода зависит от того, насколько точно вы можете держать курс, скорость и, естественно, насколько точно возьмете два пеленга. На относительно спокойной воде и при хорошо выверенном лаге этим методом можно получить фикс практически с точностьюGPS .

В другой, важно выбрать наиболее выгодный путь и держаться его, постоянно контролируя свое местонахождение. В этом людям и помогает навигация.

Древние мореходы старались плавать вблизи берегов и местонахождение судна определяли по береговым ориентирам. Смелые финикийцы и викинги, плавая вдали от берегов, ориентировались по солнцу и звездам. В XI в. появился компас, но магнитная стрелка в высоких широтах показывала не на географический север, а на магнитный полюс, не совпадающий с северным полюсом. Значит, чем выше были широты, в которых плавали суда, тем большей погрешностью отличались показания компаса. Компас являлся далеко не универсальным средством ориентации. В середине XVI в. выдающийся фламандский картограф Г. Меркатор вычислил координаты магнитного полюса, предложил новый принцип составления карт в равноугольной цилиндрической проекции. С тех пор в этой проекции составляются все морские карты.

В настоящее время направление движения судна определяют по магнитному компасу (с учетом магнитного склонения) или по гирокомпасу. Гирокомпас устроен по принципу волчка и вращается двигателем с частотой 300 ООО оборотов в минуту. Как и всякий волчок, он обладает свойством сохранять в пространстве заданное положение оси, например направление с севера на юг.

Когда судно находится в открытом море, то его курс и пройденное расстояние постоянно наносят на карту. Такой учет курса называется счислением, а курс - счислимым. Результат работы штурмана называют прокладкой (курса судна по карте).

Только поблизости от берега по маяку или по пеленгатору (прибору для определения угловых направлений на внешние ориентиры: береговые или плавучие объекты, небесные светила и др.) штурман может точно назвать координаты судна. Он определяет направление на два ориентира, положение которых известно по карте. От этих ориентиров на карте проводят линии, а точкой их пересечения и будет местонахождение судна в море.

Вдали от берега штурман пользуется навигационными приборами. Скорость судна и пройденное расстояние измеряются с помощью лага. Лаги бывают гидродинамическими и гидростатическими. Гидродинамический лаг - это вертушка (винт), которую на тросе тянут за кормой судна. Обычно лаг соединяют со счетчиком оборотов, установленным на днище судна. Чем быстрее идет судно , тем быстрее вращается лаг, и счетчик показывает большее число оборотов, а на его циферблате указывается значение скорости судна.

Гидростатический лаг воспринимает силу давления воды. В воду опущена трубка, согнутая на конце. Отверстие трубки обращено вперед. Поток набегающей на судно воды создает Давление. Чем больше скорость, тем больше давление. По значению давления и определяется скорость судна.

Измерение скорости судна в узлах связано с применением первого простейшего лага, похожего на поплавок. Его сбрасывали с судна на веревке, разделенной на части узлами. Число «выбежавших» за полминуты с судна узлов соответствовало числу пройденных судном морских миль (1111,852 км) в час.

Однако лаг не дает очень точного представления о скорости судна, потому что с его помощью нельзя учесть скорости и направления течений, ветра, а также факторов, влияющих на снос судна. Морякам нужен не счислимый, а истинный курс судна, поэтому счислимый курс корректируется астрономическими наблюдениями с использованием секстанта (или секстана) - угломерного зеркально-отражательного инструмента для измерения высот небесных светил над горизонтом или углов между видимыми на берегу предметами. Устройство секстанта таково: к бронзовому сектору, составляющему примерно 1/6 часть круга (название прибора и произошло от латинского слова sextantis - «шестой»), прикреплены зрительная труба и два зеркала (для отражения лучей света от небесного светила). На секторе нанесены деления - градусы и минуты - для угловых измерений.

При определении местонахождения корабля или самолета по солнцу или звездам с помощью секстанта обычно измеряют высоты нескольких небесных светил над линией видимого горизонта. Затем вносят в полученный результат ряд поправок, учитывающих, например, понижение видимого горизонта и др. И наконец, определяют (чаще всего графически) поправки к счислимым координатам, пользуясь формулами мореходной и авиационной астрономии.

С развитием радиотехники радиосвязь пришла на помощь судовой навигации. Радиомаяки, местоположение которых точно известно, непрерывно посылают радиосигналы. Их принимает судовой радиопеленгатор - специальный радиоприемник , при помощи которого определяют пеленг - угол между меридианом, на котором находится судно, и направлением на источник радиоволн. При определении местоположения судна учитывают пеленги двух радиостанций (радиомаяков).

В интересах навигации используют и радиолокатор (см. Радиолокация), позволяющий «видеть» в темноте и тумане, определять расстояние и пеленг до берега или до судна, с которым нужно разойтись в море.

Место судна можно уточнить и по рельефу дна, изображенному на карте. Для этого применяют ультразвуковой прибор - эхолот (см. Акустика, акустическая техника). Измеряя время прохождения ультразвукового импульса до морского дна и обратно, прибор определяет глубину, и автосамописец вычерчивает кривую глубин - рельеф дна. Штурман сравнивает изображение на карте с показаниями эхолотов.

Важную роль играет навигационная техника в авиации, помогая водить самолеты . Перед пилотом на приборной доске среди множества различных приборов есть и навигационные. Это высотомер, устройство которого основано на тех же принципах, что и барометра, реагирующего на изменение давления. Давление с высотой уменьшается, и штурман сравнивает давление на земле с показаниями высотомера. Так можно узнать примерную высоту полета. Истинная высота полета определяется радиовысотомером - малым радиолокатором. Он посылает радиоимпульсы к земле и принимает их обратно. Скорость радиоволны известна - 300 000 км/с, и прибор определяет высоту полета по времени с момента посылки и до возвращения импульса. Измерителем скорости на высоте служит манометр, измеряющий давление встречного потока воздуха. С высотой оно уменьшается, и прибор показывает меньшую скорость. Но указатель скорости автоматически учитывает это изменение, и в результате его стрелка указывает на истинную скорость полета. О направлении полета можно судить по показаниям гирокомпаса.

С тех пор как корабли - творения рук человеческих - начали бороздить моря и океаны, перед навигаторами стояла задача определения собственного местонахождения. Огромные волны, шквалы и необходимость маневрировать галсами, держа встречный ветру курс, усложняли многодневные плавания, и одного лишь компаса стародавним мореходам не хватало. Сегодня, когда определение местоположения судна производится автоматически благодаря ГЛОНАСС, трудно представить себе положение капитана, имеющего в своем распоряжении только нехитрые приспособления для ориентации по звездам. Тем не менее и сегодня выпускники профильных средних и высших специализированных учебных заведений владеют всеми этими приборами.

Основные методы морской локации

Двухкоординатное определение судна в (локация) производится семью видами способов, в числе которых:

  • Самый древний - визуальный.
  • Более поздний, но ненамного - астрономический.
  • Топографическо-вычислительный, то есть метод нанесения на карту полного пути судна с указанием точек изменения курса и расчета пройденного расстояния через перемножение скорости на время. Изобретен примерно в то же время, что и астрономический способ, и часто применяется вместе с двумя предыдущими. Сегодня рутинную работу выполняют автоматические счислители;
  • Радиолокационный, позволяющий совмещать картину на экране радара с морской картой.
  • Радиопеленговый. Доступен в тех случаях, когда на берегу есть источники сигнала.
  • Радионавигационный, с использованием средств связи, по которым штурман получает нужную ему информацию.
  • Спутнико-навигационный метод.

Все методы, кроме первых трех, стали следствием технологической революции, произошедшей в XX веке. Они были бы невозможны без открытий и изобретений, сделанных человечеством в области радиотехники, электроники, кибернетики и прорыва в космической сфере. Сейчас совсем несложно вычислить точку в океане, в которой находится судно, определение его координат занимает считанные секунды, и, как правило, они отслеживаются в непрерывном режиме. Примерно эти же технологии применяются в авиационной навигации и даже в такой «приземленной» области, как вождение автомобиля.

Широта

Как известно, земля не плоская, она имеет форму несколько сплюснутого шара. Точки на объемной фигуре, казалось бы, должны описываться тремя эвклидовыми координатами, но географам и штурманам вполне хватает и двух. Для того чтобы произвести топографическое определение судна, нужно назвать всего две цифры, сопровождаемые словами «северной» (или «южной») широты (сокращенно с.ш. или ю.ш.) и западной или «восточной» долготы (иначе - з.д. или в.д.). Значения эти измеряются в градусах. Все очень просто. Широты считаются от экватора (0°) до полюсов (90°) с указанием, в какую сторону: если ближе к Антарктиде, то указывается южная широта, а если к Арктике, то северная. Точки одной и той же широты образуют окружности, называемые параллелями. Каждая из них имеет разный диаметр - от самого большого на экваторе (примерно 40 тыс. километров) до нулевого на полюсе.

Долгота и меры длины

Определение места судна невозможно по одной координате, поэтому есть и вторая. Долгота представляет собой условный номер меридиана с указанием опять же стороны, в которую ведется отсчет. Круг делится на 360°, две его половины, соответственно, равны 180. Нулевым считается Гринвичский меридиан, проходящий через знаменитую британскую обсерваторию. С другой стороны планеты расположен его антипод - 180-й. Обе эти координаты (0° и 180°) указываются без названия направления долготы.

Кроме градусов есть еще и минуты - они указывают положение предметов с большей в 60 раз точностью. Так как все меридианы имеют равную длину, именно они стали мерой длины у моряков. Одна соответствует одной минуте любого меридиана и равна 1,852 км. Метрическую систему ввели намного позже, поэтому штурманы судов используют старую добрую английскую милю. Также применимы такие единицы, как кабельтов - он равен 1/10 мили. Что удивительно, ведь раньше англичане чаще считали дюжинами, чем десятками.

Визуальный способ

Как ясно из названия, метод основан на том, что видят штурман и капитан, а также другие члены команды, находящиеся на палубе или снастях. Раньше, во времена парусных флотов, была должность вперед смотрящего, пост этого матроса размещался на самом верху, в специально отгороженном месте грот-мачты - клотике. Оттуда видно было лучше. Определение места судна по береговым предметам подобно самому простому методу пешехода, знающего, что нужен ему, например, дом по улице Старопортофранковской под номером 12, а для точности есть еще один критерий поиска - аптека, расположенная напротив. У моряков, правда, ориентирами служат другие объекты: маяки, горы, острова или какие-либо другие заметные детали ландшафта, но принцип тот же. Нужно замерить два или более азимута (это угол между стрелкой компаса и направлением на ориентир), нанести их на карту и в точке их пересечения получить свои координаты. Ясное дело, такое судна, а вернее его местоположения, применимо только в зоне прибрежной видимости, и то в ясную погоду. В туман можно ориентироваться по звуку сирены маяка, а за неимением надводных примет - обратиться к мелям на мелководье, замеряя лотом глубину.

Астрономия на морской службе

Самый романтический метод локации. Примерно в XVIII веке моряки вместе с астрономами изобрели секстан (иногда его называют секстантом, так тоже правильно) - прибор, с помощью которого можно производить довольно точное двухкоординатное определение судна по положению на небе светил. Устройство его на первый взгляд сложное, но на деле научиться пользоваться им можно довольно быстро. В его конструкции есть оптическая система, которую следует навести на Солнце или какую-либо звезду, предварительно установив прибор строго горизонтально. Для точного наведения предусмотрены два зеркала (большое и малое), а по шкалам определяется угловое возвышение светила. Направление прибора задается компасом.

Создатели прибора учли многовековой опыт древних судоводителей, ориентировавшихся только на свет звезд, луны и солнца, но создали систему, упрощающую как обучение навигации, так и сам процесс локации.

Вычисление

Зная координаты исходной точки (порта выхода), время движения и скорость, можно прокладывать на карте всю траекторию, отмечая, когда и на сколько градусов был изменен курс. Этот метод мог бы быть идеальным в случае, когда направление и скорость не зависят от течения и ветра. Неравномерность хода и погрешности показателя лага также влияют на точность получаемых координат. В распоряжении штурмана находится особая линейка для прокладки параллельных линий на карте. Определение маневренных элементов морского судна производится с помощью компаса. Обычно в точке смены направления определяется истинное положение с применением других доступных методов, а так как оно, как правило, не совпадает с вычисленным, то между двумя точками рисуется своеобразная закорючка, отдаленно напоминающая улитку и называемая «невязкой».

В настоящее время на борту большинства судов установлены автоматические приборы-вычислители, которые с учетом вводимой скорости и направления производят интегрирование по переменной времени.

С использованием радара

Сейчас на морских картах белых пятен не осталось, и опытный штурман, видя очертания берега, может сразу сказать, где находится вверенное его заботе плавсредство. Например, заметив на горизонте даже в туман свет маяка и услышав приглушенный звук его сирены, он тут же скажет что-нибудь вроде: «Мы на траверсе огня Воронцовский, дистанция две мили». Это означает, что судно находится на указанном расстоянии на линии, соединяющей под прямым углом курс и перпендикулярное направление на маяк, координаты которого известны.

Но часто бывает, что до берега далеко, и видимых ориентиров нет. Раньше, во времена парусного флота, корабль «клали в дрейф», собирая паруса, иногда, если был известен капризный характер доминирующих ветров и непредсказуемость дна (рифы, мели и т. д.), то ставили на якорь и «ждали в море погоды», то есть прояснения. Сейчас нет необходимости в такой потере времени, а береговую линию штурман может увидеть, глядя на экран локатора. Определение судна с помощью РЛС - задача несложная при наличии квалификации. Достаточно совместить изображение на навигационном приборе и карту соответствующего района, и сразу все станет ясно.

Пеленгование и радионавигационный метод

Есть такая радиолюбительская игра - «Охота на лис». С помощью самодельных приборов ее участники ищут спрятавшуюся в кустах или за деревьями «лису» - игрока, у которого есть работающая радиостанция малой мощности. Таким же образом, т. е. пеленгуя, контрразведывательные службы вычисляют резидентов иностранных разведок (по крайней мере, раньше так было) в момент отправки ими шпионских донесений. Для локации требуется не менее двух направлений, пересекающихся в точке местоположения, но чаще всего их больше. Так как всегда существуют некоторые разбросы показаний, и абсолютной точности добиться невозможно, пеленги сходятся не в одной точке, а образуют некую многостороннюю фигуру, в геометрическом центре которой и следует с высокой степенью вероятности предполагать свое местоположение. Ориентирами могут служить специально создаваемые на берегу лоцманские сигналы (например, на маяках) или излучения радиостанций, координаты которых известны (они нанесены на карту).

Также широко применима береговая корректировка курса с использованием средств радиосвязи.

По спутникам

Сегодня заблудиться в океане или море практически невозможно. За перемещением движущихся объектов на море, в воздухе и на суше наблюдают российская "Коспас" и международная Sarsat. Работают они по допплеровскому принципу. На судно необходимо установить особый радиобуй, но безопасность и уверенность в благополучном исходе рейса стоят затрачиваемых на него средств. Пеленгаторы размещены на геостационарных («висящих» над фиксированной точкой земной поверхности) спутниках, составляющих систему. Услуга эта предоставляется бесплатно и, помимо спасательной функции, выполняет навигационный поиск точки нахождения судна. Спутнико-навигационный метод дает самые точные координаты, его применение не вызывает сложностей, и штурманы в наш технологический век его используют чаще всего.

Дополнительный параметр - загрузка

На судоходные качества судна и его возможный курс существенно влияет его осадка. Как правило, чем большая часть корпуса погружена в воду, тем выше уровень его гидродинамического сопротивления. Бывают, впрочем, и исключения, например, у атомных субмарин подводный ход превышает надводный, а особая носовая «бульба» в случае ее полной утопленности создает эффект лучшей обтекаемости. Так или иначе, но на скорость движения (ход) влияет масса груза (карго) в трюмах или танках. Для оценки этой величины моряки используют особые метки с рисками на носовой, кормовой и бортовых частях корпуса (шкал не менее шести). Наносятся эти знаки индивидуально, у каждого судна они свои, единого стандарта нет. Методика определения веса груза на борту судна, получившая наименование «драфт сюрвей», основана на использовании «марок осадки» и применяется для многих целей, в частности навигационных. Глубина дна не всегда позволяет кораблю проходить по конкретному фарватеру, и штурман обязан учитывать этот фактор.

Остается лишь пожелать как минимум тем, кто отправляется в плаванье.

Данная статья содержит перечень основных штурманских инструментов и их описание.

Штурманские приборы и инструменты

Чтобы обеспечить безопасность плавания, контроль за движением судна и его местонахождением относительно берега, в штурманской практике применяют различные технические средства судовождения (ТСС), навигационные приборы и инструменты:

  • для определения направления - компасы;
  • для определения скорости движения судна и пройденного расстояния - лаги;
  • для определения глубины под килем - ручные лоты и эхолоты;
  • угломерные инструменты (секстаны), часы и секундомеры, оптические дальномеры, бинокли, наклономеры и др.;
  • традиционный инструментарий для работе на карте - штурманский транспортир, параллельная линейка, циркуль- измеритель, циркуль, протрактор, грузики для карт;
  • гидрометеорологические приборы - барометр, барограф, анемометр, круг СМО, термометр наружный, кренометр.

Компасы.

Это навигационные приборы, предназначенные для определения курса судна и направлений на береговые ориентиры и плавучие объекты, находящиеся в поле зрения судоводителя. На маломерных судах могут встретиться различные типы компасов и их модификации. Наиболее распространенным курсоуказателем является магнитный компас.

Измерители скорости – лаги

Лаги различных типов прочно заняли место наряду с другими современными ТСС. Из всех типов лагов (гидродинамического, индукционного, доплеровского гидроакустического, корреляционного, радиодоплеровского) наиболее приемлемыми для катеров и яхт являются гидроакустический и индукционный лаги, для судов на воздушной подушки наиболее приемлем радиодоплеровский лаг.

Измерители глубины.

Лотом называется прибор, с помощью которого измеряют глубины под днищем судна. Навигационные лоты различных типов предназначены для измерения глубин до 500 м Лоты бывают ручные и гидроакустические эхолоты. На маломерных судах используются преимущественно ручные лоты,
Ручной лот предназначен для измерения глубин до 50 м. Лот состоит из гири и лотлиня.

Эхолот. Хотя редко, но и на маломерных судах применяются современные измерители глубины – эхолоты

Принцип действия эхолота основан на измерении времени, за которое звуковой импульс достигает дна и после его отражения возвращается обратно. После необходимых преобразований (практически это происходит мгновенно) на специальном табло или дисплее высвечивается значение глубины и рельеф дна.

Измерители расстояния.

Бинокль. Бинокли используются судоводителями для наблюдения за окружающей обстановкой (другими судами, береговыми ориентирами, знаками навигационной обстановки и т.д.)

Секстан – угломерный инструмент отражательного типа для измерения высот небесных светил и углов (вертикальных и горизонтальных) на земной поверхности. Для измерения вертикального угла секстан берется в правую руку и в вертикальном положении направляется трубой на основание предмета (маяк, судно, заводская труба, знак и т.д.). Затем стопором передвигается алидада так, чтобы подвести дважды отраженное изображение верхней части предмета к его основанию. После чего снимается в градусах отсчет по индексу алидады в соответствии с делением лимба, а минуты и их десятые доли – с отсчетного барабана. Снятый отсчет исправляют поправкой индекса секстана и полученный результат будет соответствовать величине вертикального угла на данный предмет.

Измерители времени.

Морской хронометр.
Этот прибор служит для определения достаточно точного гринвичского времени, его часто называют хранителем всемирного времени. Высокая точность хода и его равномерность обеспечиваются специальными регуляторами. Большой циферблат разбит на 12 часовых делений и имеет часовую и минутную стрелку. На одном из двух малых циферблатов стрелка отсчитывает секунды, на другом – время, прошедшее с момента последнего завода хронометра. Хранится хронометр в специальном ящике на кардановом подвесе, который обеспечивает состояние покоя часовому механизму во время качки. Заводится хронометр ежесуточно в одно и тоже время (как правило, в 8 часов).
Поправка хронометра (разность между Тгр и показанием хронометра) определяется по радиосигналам точного времени и каждые сутки фиксируется в специальном журнале. Рис.15 Хронометр
Палубные часы. Устанавливаются по гринвичскому времени, и при отсутствии на судне хронометра, выполняют его функцию. Механизм часов имеет повышенную точность.
Циферблат разбит на 12 делений и имеет часовую, минутную и центральную секундную стрелки.
Судовые или морские часы. Назначение судовых часов – показывать судовое время, по которому организуется служба и повседневная жизнь на судне. Их устанавливают в каютах и служебных помещениях. Часы имеют круглый циферблат, разбитый на 12 или 24 часовых деления, часовую, минутную и центральную секундную стрелки. Как правило завод часов недельный.
Секундомер - служит для точного измерения небольших промежутков времени. На маломерных судах ручные или карманные часы, имеющие большую центральную секундную стрелку, вполне могут заменить секундомер. Эти же часы можно использовать для определения пройденного расстояния, моментов взятия пеленгов, времени изменения курса и других моментов, которые необходимо наносить на карту.

Прокладочные ин струменты

При работе на карте судоводитель-любитель должен использовать прокладочный инструмент, в набор которого входят параллельная линейка, транспортир, циркуль-измеритель, грузики для карт.

Параллельная линейка (рис.16) служит для проведения на карте прямых и параллельных заданному направлению линий. Линейка состоит из двух половин, соединенных двумя равными тягами на шарнирах. Срезы линеек не должны иметь зазубрин, изгибов, заусениц, а тяги должны легко вращаться вокруг осей, но без свободного хода. При работе с линейкой необходимо следить за параллельностью передвижения, чтобы не сбить заданного направления линии. Линии наносят остроотточенным карандашом без заметного усилия.


Транспортир навигационный (рис. 16) служит для построения и измерения на карте углов, курсов и пеленгов. Он представляет собой полукруг с линейкой имеется несколько разновидностей). Центр полукруга отмечен вырезом на линейке. Верхний срез дуги градуирован по верхнему ряду от точки 1 до точки 2 влево - от 0 до 90°, от точки 2 до точки 3 влево - от 270 до 360°, по нижнему ряду от точки 1 до точки 2 влево - от 180 до 270° и от точки 2 до точки 3 - от 90° до 180°. Верхний ряд цифр используется для прокладки направлений северной половины картушки компаса, а нижний - южной.


Следует помнить, что углы увеличиваются от О до 360° от нордовой части меридиана вправо.
Циркуль-измеритель служит для измерения ‘расстояний и нанесения их на карту. Работать с циркулем удобнее одной рукой. Большие расстояния откладывают по частям. Разводить ножки циркуля более чем на 90° не рекомендуется. Расстояние измеряют на боковой рамке карты в той же широте, где происходит плавание или находится измеряемое расстояние. Отложив расстояние, следует проверить его повторным обратным измерением.


Грузики для карт предназначены для удержания карты на рабочем месте. На маломерных судах, где нет рубки, грузики можно заменять кнопками, которыми карта крепится на плоском деревянном переносном планшете.

Гидрометеорологические приборы.
Атмосферное давление (давление воздуха, барометрическое давление) определяется весом столба воздуха, который давит на единицу площади горизонтальной поверхности. Прибор для измерения атмосферного давления носит название барометра. Шкала прибора проградуирована в миллиметрах ртутного столба, на ней встроен термометр.

В рулевой рубке каждого торгового судна установлено разнообразное навигационное оборудование, приборы, устройства и инструменты, при помощи которых капитан и штурмана обеспечивают безопасное управление судном.

Навигационное оборудование - это судовые технические средства, которыми укомплектовано судно для решения задач навигации.

Навигация - процесс принятия решения и управления курсом и скоростью судна при движении из одного пункта в другой, с учетом окружающих условий и интенсивности судоходства.

Навигационное устройство - это судовое техническое средство, предназначенное для решения одной или нескольких задач навигации.

Навигационный инструмент - это судовой навигационный прибор, предназначенный для выполнения работ вручную при решении задач навигации.

Навигационный прибор - это прибор, предназначенный для выполнения отдельных функций по измерению навигационных параметров, обработке, хранению, передаче, отображению и регистрации данных при решении задач навигации на судне.

Для лучшего просмотра все фото кликабельны.

Судовые часы. По судовым часам фиксируется время всех событий. Судовые часы должны ежедневно сверяться по сигналам точного времени и должны иметь точность не боле одной минуты. Все судовые часы должны быть выставлены по одному часовому поясу. Одни судовые часы должны быть выставлены по Гринвичскому времени или Всемирному координированному времени (Coordinated Universal Time – UTC).

Магнитный компас (Magnetic compass) . Самый надежный и незаменимый прибор. Если конечно он исправен и регулярно проверяется в береговой мастерской. По крайней мере раз в два года у магнитного компаса должна под уничтожается девиация, определяться остаточная девиация и составляться таблица девиации (Deviation card). На некоторых судах устанавливают главный магнитный компас и путевой. Если на судне установлен только один компас, то как правило должен иметься один запасной компас. Магнитный компас является запасным источником курсоуказания для авторулевого и ECDIS. Отдельная статья о магнитном компасе находится . В спасательных и дежурных шлюпках обязательно должны быть магнитные компасы для курсоуказания.

Гирокомпас (Gyro compass ). Гирокомпас. Основной источник курсоуказания. Курсоуказание от гирокомпаса поступает на радиолокаторы, АРПА, ЭКНИС, авторулевой, цифровой индикатор курса, репитеры гирокомпаса в рулевой рубке, штурманской рубке, крыльях мостика, румпельном отделении.

Репитер гирокомпаса с (Gyro repeater with taking bearing device). Устанавливаются на крыльях мостика и служат для взятия визуальных пеленгов. Пеленга маяков и знаков берутся для определения места судна в море в вблизи берегов. Пеленга небесных светил берутся для определения поправки компасов. Пеленга на приближающиеся суда берутся для определения наличия опасности столкновения с ними. На фото изображен простой пеленгатор. Бывают также оптические пеленгаторы, в которых установлены линзы для приближения пеленгуемых объектов.

Цифровой индикатор курса (Transmitting heading device). Устройство цифрового отображения курса судна. Обязательное устройство.

Бинокль (Binocular ). Служит для распознания объектов находящихся на некотором расстоянии от судна и плохо различимых невооруженным глазом. Также используется для наблюдения в соответствии с правилом 5 МППСС-72.

Радиолокатор (Radar ). Радиолокатор служит для предупреждения столкновения с другими судами и для навигационных целей – определения места судна по пеленгам и дистанциям береговых ориентиров, измеренных при помощи радиолокатора. Служит для наблюдения за окружающей обстановкой в соответствии с правилом 5 МППСС-72.

АРПА (ARPA ). Устройство для предупреждения столкновения с другими судами и плавучими объектами. Служит для наблюдения за окружающей обстановкой в соответствии с правилом 5 МППСС-72. В большинстве современных радиолокаторов реализована функция АРПА и поэтому в виде отдельного прибора АРПА практически не встречается.

Электронно-картографическая навигационно-информационная система – ЭКНИС (Electronic Chart Display and Information System ECDIS ). Устройства электронной картографии служат для отображения навигационной карты, навигационной информации и местоположение судна по координатам приемника GPS на дисплеях. На многих судах установлены два комплекта оборудования ЭКНИС и бумажные навигационные карты отсутствуют.

Приемник спутниковой навигации (Global Positioning System – GPS). Служат для определения координат судна при помощи глобальной спутниковой системы. Отображает скорость судна относительно грунта. Пройденное расстояние. Служит для введения координат путевых точек маршрута перехода, составления маршрута перехода, передачи маршрута перехода на радиолокатор. Показывает направление и расстояние до путевых точек, отклонение от маршрута, время прихода в путевые точки.

Эхолот (Echo sounder ). Устройство для измерения глубины под килем судна.

Лаг (Speed and distance Log). Устройство служит для измерения скорости судна и пройденного судном расстояния. Измеряет скорость судна как относительно воды, так и относительно грунта. Скорость относительно воды необходима для передачи в радиолокатор и АРПА для решения задач по расхождению с другими судами.

Автоматическая идентификационная система (Automatic Identification System AIS ). Служит для приема и передачи данных судна при помощи приемопередатчика УКВ. Отображает данные полученные от других судов на дисплее устройства и передает их на радиолокатор и ЭКНИС. Служит для наблюдения за окружающей обстановкой в соответствии с правилом 5 МППСС-72.

Панель навигационных огней (Navigation Lights ). Каждое судно должно выставлять огни в соответствии с правилами МППСС-72. На панели навигационных огней предусмотрена световая и звуковая предупредительная сигнализация в случае если какой-либо огонь погаснет.

Судовой свисток Ship s whistle ). Судовой свисток служит для подачи предупредительных и туманных сигналов в соответствии с правилами МППСС-72.

Устройство для подачи туманных сигналов судна (Automatic fog signal device ). Для подачи туманных сигналов в автоматическом режиме.

Система контроля дееспособности вахтенного помощника (Bridge Navigational Watch Alarm System BNWAS . Служит для подачи звукового сигнала в случае недееспособности вахтенного помощника капитана. Должна быть включена во все время после отхода судна от причала и до швартовки у причала.

Авторулевой (Autopilot ). Служит для удержания судна на курсе в автоматическом режиме. Если в устройстве имеется режим удержания судна на линии пути, то в этом авторулевой будет сам изменять курс судна, чтобы привести его в следующую путевую точку. При подходе к путевой точке на заданное расстояние устройство подаст звуковой сигнал, если вахтенный помощник нажмет кнопку подтверждения, то устройство переложит руль и выведет судно на следующий заданный курс.

Регистратор данных рейса – VDR Voyage Data Recorder . Черный ящик судна. Устройство регистрации данных навигационных приборов и устройств.

Приемник НАВТЕКС – NAVTEX receiver . Служит для приема различных предупреждений в автоматическом режиме: навигационных, метеорологических, бедствия и других.

Терминал Инмарсат – С (Inmarsat C ). Служит для приема и отправки сообщений через систему спутниковой связи.

Система дальней идентификации и контроля местоположения судов – ОСДР (Long Range Identification and Tracking System LRIT ). Служит для передачи данных судна (координаты, курс, скорость, идентификатор судна) в автоматическом режиме через систему спутниковой связи.

Аксиометр перекладки руля (Rudder Angle Indicator ). Устройство показывающее направление и угол перекладки руля.

Указатель угловой скорости поворота (Rate of turn indicator ). Показывает угловую скорость поворота судна.

Устройство приема и воспроизведения звук (Sound Reception System ). Устройство служит для воспроизведения наружных звуков в закрытых мостиках.

Секстан (Sextant ). Секстан (Секстант) навигационный применяется для измерения высот небесных светил, которые используются для расчета линий положения и определения места судна астрономическими способами. Также им измеряют высоты береговых и плавучих навигационных знаков, и других объектов. Кроме этого, истинные штурмана-навигаторы, навигационным секстаном измеряют горизонтальные углы между тремя навигационными знаками и по двум горизонтальным углам определяют местоположение судна в море. Но так определяют место судна только очень истовые навигаторы, к сожалению большинство современных штурманов можно отнести к «GPS-навигаторам», то есть к тем, кто кроме как по GPS-у определить положение судна в море уже не в состоянии. Профессиональная деградация однако. О навигационном секстане отдельная статья

Хронометр (Chronometer ). Показывает время на Гринвичском меридиане. До изобретения радио хронометр являлся единственным источником точного времени на судне. От точности хронометра и знании его суточного хода, зависела точность определения места парусного судна в море. Хронометры выверялись астрономами в обсерваториях, с максимально возможной точностью определялся их суточный ход и перед отплытием судна в море они с величайшей осторожностью доставлялись на борт. После длительного океанского плавания, при первой же возможности хронометры свозились на берег для их проверки и определения суточного хода. На каждом судне имелось несколько хронометров. С появлением радиоприемников появилась возможность принимать радиосигналы точного времени для определения суточного хода хронометров и требования к их точности несколько снизились. С появлением спутниковых средств навигации и значительного ослабления роли астрономических наблюдений в навигации, хронометры почти на всех торговых судах заменили на точные часы. Однако до сих пор отдельные точные часы используемые для хранения времени называют хронометрами. Штурман отвечающий за навигационные приборы обязан вести журнал хронометра в который записывать суточный ход хронометра.

Секундомер механический (Stopwatch). Служит для фиксирования времени в момент астрономических и навигационных наблюдений, для определения поправки хронометра, для сличения и установки судовых часов. Для определения характеристики огней маяков и других навигационных знаков и буёв. Используется для определения периода бортовой и килевой качки судна и периода волны.

Звездный глобус (Star Globe ). Используется для решения задач мореходной астрономии. Более подробно об устройстве звездного глобуса можно прочесть

Ручной Анемометр (Wind anemometer ). Служит для измерения скорости ветра.

Автоматическое устройство измерения скорости и направления ветра (Wind speed and direction indicator ). Служит для измерения направления и скорости ветра в автоматическом режиме.

Судовой гонг Ship s gong ). Служит для подачи туманных сигналов в соответствии с правилами МППСС-72. Обязателен для всех судов, длиной 100 метров и более. Гонг представляет из себя латунный диск с бортиком. В него в ручную ударяют билом, которое представляет из себя рукоятку с шарообразной ударной частью на конце.

Сигнальные флаги – МСС (ICS ). Флаги служат для подачи сигналов в соответствии с Международным Сводом Сигналов – МСС (International Code of Signal – ICS).

Сигнальные фигуры – шары, цилиндр, ромб (Signaling Shapes ). Служат для выставления сигналов в соответствии с правилами МППСС-72.

Штурманский стол для карт (Chart table). Установлен в святая-святых для каждого штурмана – в штурманской рубке. На нем в море раскладывается навигационная карта с выполненной предварительной прокладкой, на ней же ведется исполнительная прокладка с обсервациями места судна. В выдвижных ящиках стола хранятся навигационные карты. В боковых рундуках могут храниться навигационные инструменты.

Грузики для карт. Служат для удержания навигационной карты на штурманском столе во время качки судна. Как правило изготавливаются из резины. В качестве утяжелителя, внутри грузика находится свинец. Более подробно о применении грузиков можно ознакомиться в статье « ».

Лупа штурманская (magnifier). Служит для увеличения трудно различимых изображений на навигационной карте.

Штурманская параллельная линейка (Navigational ruler ).

Штурманский транспортир (Protractor ). Служит для прокладки, определения места судна и других штурманских задач на навигационной карте.

Штурманский измеритель (Navigational divider ). Служит для прокладки, определения места судна и других штурманских задач на навигационной карте. Измерители изготавливаются из латуни или хромированной стали. Они бывают различного вида и размеров.

Штурманский циркуль. Как правило, для штурманских целей используется обычные чертежные циркули разных размеров и типов, главное, чтобы они были удобны в работе на навигационной карте и не наносили карте значительных повреждений.


Протрактор навигационный.
Навигационный инструмент, который служит для определения места судна по двум горизонтальным углам.

Порядок определения места судна по двум горизонтальным углам .

Кренометр (inclinometer). Служит для определения угла крена судна.

Барометр (Barometer ). Служит для определения атмосферного давления.

Барограф (Barograph ). Служит для определения атмосферного давления и наблюдения за его изменением. Показание барометра записывается на бумажной ленте.

Термометр (Thermometer ). Служит для измерения температуры окружающего воздуха.

Гигрометр (Hygrometer ). Служит для измерения влажности окружающего воздуха.

Компьютер с подключенным спутниковым интернетом. Служит для приема карт погоды и планирования безопасного маршрута с учетом прогнозов погоды. Также служит для передачи и приема оперативной информации для обеспечения безопасной эксплуатации судна.

В зависимости от специального назначения на мостике устанавливаются специальные приборы и устройства, и вахтенный помощник использует их для решения специальных задач.